Inpainting & Visual Interpolation Jackie (Jianhong) Shen School of Math, University of Minnesota, Minneapolis www.math.umn.edu/~jhshen #### **Collaborated with:** Tony F. Chan & Stan Osher (UCLA) Sung-Ha Kang (University of Kentucky) Selim Esedoglu (IMA, UMN/UCLA) Group Web: www.math.ucla.edu/~imagers #### **Table of Contents** - 1. Examples of Inpainting: Applications and Motivations - 2. Bayesian vs. Variational: Gibbs Fields & Ising's Lattice Spins. - 3. TV Inpainting: Space of BV and Connection to Minimal Surfaces - 4. CDD Inpainting: Using 'Bad' Curvatures to Drive Interpolation - 5. Elastica Inpainting: From Euler to Mumford, & Curves to Images - 6. Mumford-Shah-Euler Inpainting: Free Boundary & Γ -Convergence - 7. Conclusion #### **Table of Contents** - 1. Examples of Inpainting: Applications and Motivations - 2. Bayesian vs. Variational: Gibbs Fields & Ising's Lattice Spins. - 3. TV Inpainting: Space of BV and Connection to Minimal Surfaces - 4. CDD Inpainting: Using 'Bad' Curvatures to Drive Interpolation - 5. Elastica Inpainting: From Euler to Mumford, & Curves to Images - 6. Mumford-Shah-Euler Inpainting: Free Boundary & Γ -Convergence - 7. Conclusion (A) <u>Scratch Removal</u> (Bertalmio-Sapiro-Caselles-Ballester, *SIGGRAPH*, 2000) (B) <u>Crack Restoration</u> (for Digital Museums) (Giakoumis-Pitas, 1998) Museum restoration (C) <u>Disocclusion</u> (Nitzberg-Mumford-Shiota, 1993; Masnou-Morel, 1998) (D) <u>Text Removal</u> (Bertalmio et al., 2000; Chan-Shen, 2001) ### **Zoom-in (super-resolution, magnification)** Chan-Shen (*SIAM J. Appl. Math.*, 2001), Tsai-Yezzi-Willsky (*IEEE Trans. I. P.*, 2001), Ballester-Bertalmio-Caselles-Sapiro-Verdera (*IEEE Trans. I. P.*, 2001) Image source: Test Image Databank, Computational Vision Group, Caltech. ### **Primal-Sketch Based Image Coding** Chan-Shen (SIAM J. Appl. Math., 2001) Edge detection ### A primal sketch David Marr once asked . . . Image source: Test Image Databank, Computational Vision Group, Caltech. #### **Error Concealment in Wireless Transmission** Chan-Shen [AMS Contemp. Math.,2002] #### Random packet loss due to transmission Deblurring and error concealment by TV inpainting **Error concealment** ### What Is Inpainting Inpainting = Image Interpolation. (initially circulated among museum restoration artists; first introduced into I.P. by Saprio's group [EECS, UMN, 1999]) - What makes inpainting difficult is the <u>complexity</u> of images: - having a large dynamic range of scales; - intrinsically non-smooth due to edges and boundaries; - the missing domains can have complicated topology; - direct classical interpolation tools perform less ideally: - polynomials (Lagrange, Hermite, splines); - linear filtering (Fourier, wavelets, linear (heat) diffusion); - radially symmetric functions (as in spatial statistics). ## 3rd Order PDE Inpainting: Transport • <u>Bertalmio, Sapiro, Caselles and Ballester</u> (2000) were the first to apply *high-order* PDEs to inpainting: <u>smoothness transportation</u> $$\frac{\partial}{\partial t} u = \nabla^{\perp} u \cdot \nabla (L_{\text{smooth}}), \quad L_{\text{smooth}} \quad \text{can be } \Delta u.$$ If the solution does converge as $t \rightarrow$ infinity, then L must remain constant along isophotes. Andrea Bertozzi et. al (2001) found the connection to the Navier-Stokes and vortex dynamics for incompressible flows: treating \mathcal{U} as the stream function. We take a different approach #### **Table of Contents** 1. Examples of Inpainting: Applications and Motivations - 2. Bayesian vs. Variational: Gibbs Fields & Ising's Lattice Spins. - 3. TV Inpainting: Space of BV and Connection to Minimal Surfaces - 4. CDD Inpainting: Using 'Bad' Curvatures to Drive Interpolation - 5. Elastica Inpainting: From Euler to Mumford, & Curves to Images - 6. Mumford-Shah-Euler Inpainting: Free Boundary & Γ -Convergence - 7. Conclusion ### **Our Approach: Bayes/Helmholtz Principle** - Inpainting is an image restoration problem. - The universal approach for image restoration (denoising, deblurring, segmenting, e.t.c.) is the <u>Bayesian framework</u>. Or, in terms of machine and human vision, the <u>Helmholtz principle</u>. - Bayesian MAP (maximum a posteriori probability) is to maximize #### **MAP: Maximum A Posteriori Probability** #### Bayesian framework for image restoration: - *Prior model*: Prob(\mathcal{U}) What are images really? - Data model: $\operatorname{Prob}(u^0 \mid u)$ -- How is the observation u^0 generated from the ideal image u. - **Bayes' Formula:** $p(u | u^0) = \frac{p(u)}{p(u^0)} p(u^0 | u).$ - Best guess = Maximum A Posteriori Probability: $$\max p(u \mid u^0).$$ ### **Bayesian Goes Variational** Mumford (1994), "The Bayesian rationale for energy functionals," Bayesian formulation: $\max p(u | u^0)$. $$p(u | u^{0}) = \frac{p(u)}{p(u^{0})} p(u^{0} | u).$$ **Energy (or variational) formulation:** $$\min E[u | u^0]$$ $$E[u | u^{0}] = E[u] + E[u^{0} | u].$$ They are formally bridged by Gibbs' Law in Stat. Mechanics: Probability $$\propto \exp(-\text{Energy}/\kappa T)$$. In this talk, we always use the energy/variational formulation. ### **Data Model Is Simple. Prior Model Crucial** For most inpainting problems, the <u>data model</u> is simple : $$u^{0}|_{\Omega \setminus D} = [K * u_{\text{original}} \oplus \text{noise}]_{\Omega \setminus D}.$$ Assuming Gaussian noise, then $$E[u^{0} | u] = \frac{\lambda}{2} \int_{\Omega \setminus D} (K * u - u^{0})^{2} dx.$$ Therefore, an effective Bayesian/variational inpainting model crucially depends on a good (prior) image model E[u]! ### Geometric Image *Prior* Models #### Ways to acquire *prior* image models: - Markov/Gibbs random fields (Geman-Geman, 1984; Blake-Zisserman, 1987; Black-Rangarajan, 1994) based on the lattice model in Statistical Mechanics. - Filtering and entropy based learning (Zhu-Wu-Mumford, 1997, 1998). - Axiomatic approach for stochastic models (Mumford-Gidas, 2000). - Geometric models (in this talk): - A) **Bounded variation** (Rudin-Osher-Fatemi,1992,1994; Chan-Shen, 2000); - B) The object-boundary model (Mumford-Shah, 1989); - C) Functionalized elastica (Masnou-Morel, 1998, Chan-Kang-Shen, 2001); - D) Mumford-Shah-Euler image (Esedoglu-Shen, 2001). First get a taste from the Ising Spin Model ## Ising's Spin Crystal Ising's Lattice Spin Model (simplified ferromagnet): Spin up: $$S = 1$$; down: $S = -1$. $$E[s] = -\sum_{\alpha \propto \beta} J_{\alpha\beta} s_{\alpha} s_{\beta} - H \sum_{\alpha} s_{\alpha}.$$ short range coupling external field Ground state: S = sign(H). - 1-D model was solved by Ising (1925). - 2-D model by Onsager (1944). - Analytic solutions to (>2)-D models are still unknown. - First connected to vision/image analysis by Geman-Geman (Division Appl. Math., Brown U., 1984). ## Inpainting Binary Images by Ising's Model **Suppose**: boundary spins are known (locked). What are the spins at α , β , γ , δ ? Assuming that there is no external field (i.e., H=0). $$\min E[s_{\alpha}, s_{\beta}, s_{\gamma}, s_{\delta} \mid \text{given boundary spins}].$$ Solution for this example: $S_{\alpha} = S_{\gamma} = 1$; $S_{\beta} = S_{\delta} = -1$. A **step-edge** is perfectly recovered! *However*, - Real images are generally not binary. - Available image data are often polluted (by noise or blur). - Geometry is not explicitly imposed. As a result, the regularity of the transition edges is generally not guaranteed. Geometry ? But How ? #### **Table of Contents** - 1. Examples of Inpainting: Applications and Motivations - 2. Bayesian vs. Variational: Gibbs Fields & Ising's Lattice Spins - 3. TV Inpainting: Space of BV & Connection to Minimal Surfaces - 4. CDD Inpainting: Using 'Bad' Curvatures to Drive Interpolation - 5. Elastica Inpainting: From Euler to Mumford, & Curves to Images - 6. Mumford-Shah-Euler Inpainting: Free Boundary & Γ -Convergence - 7. Conclusion ### Functions with Bounded Variations (BV) • BV(Ω)={ $u \mid \text{integrable and with finite total variation TV}[u] }:$ TV $$[u] = \int_{\Omega} |Du| = \sup_{\text{smooth } \mathbf{f}: |\mathbf{f}| \le 1} \int_{\Omega} u \nabla \cdot \mathbf{f} dx$$. The Sobolev space W(1,1) is its subspace, for which TV $$[u] = \int_{\Omega} |\nabla u| dx = \int_{\Omega} \sqrt{u_{x_1}^2 + u_{x_2}^2} dx$$. Generally, TV is a Radon measure. Geometry of TV (why good for vision/image modeling): Coarea Formula (De Giorgi, 1961) $$E[u] = \int_{-\infty}^{\infty} \operatorname{Per}(u < \lambda, \Omega) d\lambda \overset{\text{smooth } u}{\Rightarrow} \int_{-\infty}^{\infty} \operatorname{length}(u = \lambda) d\lambda.$$ A collective way to impose geometry on all level-sets/edges! #### **TV Inpainting: Model & Computation** Chan-Shen (2000; SIAM J. Appl. Math., 62(3), 2001) The TV inpainting model: total variation (TV) energy $$\min_{u} E[u | u^{0}, D] = \int_{\Omega} |Du| + \frac{\lambda}{2} \int_{\Omega \setminus D} |u - u^{0}|^{2} dx,$$ least square (for Gaussian) The associated *formal* Euler-Lagrange equation on Ω : $$0 = \nabla \cdot \left\lceil \frac{\nabla u}{|\nabla u|} \right\rceil + \lambda_D(x)(u^0 - u), \quad \lambda_D(x) = \lambda \cdot 1_{\Omega \setminus D}(x).$$ with Neumann adiabatic condition along the boundary of Ω . ### TV Inpainting: Existence Chan-Kang-Shen [SIAP, 2002] #### **Existence Theorem** for TV Inpainting: $$\min_{u} E[u | u^{0}, D] = \int_{\Omega} |Du| + \frac{\lambda}{2} \int_{\Omega \setminus D} |u - u^{0}|^{2} dx,$$ There **exists** at least one optimal inpainting in the space $BV(\Omega)$. Proof. Similar to Chambolle and Lions (1997). Applying - Lower semicontinuity & weak compactness. - Lebesgue dominated convergence theorem. # TV Inpainting: An Example for Disocclusion Chan-Shen [SIAP, 2001] ## TV Inpainting: Uniqueness Is NOT Guaranteed Chan-Kang-Shen [SIAP, 2002] - Unlike Rudin-Osher-Fatemi's denoising model, the uniqueness of TV inpainting is generally **not** guaranteed. - Non-uniqueness of the model, in our opinion, should be appreciated, instead of being cursed. It models the multiple valleys of the Bayesian decision/cost function, which simulates the uncertainty of human decision making. - An example of uncertainty (vision foundation for non-uniqueness): ## **Viscosity** Approximation of TV Inpainting Computationally, the degenerated 2nd order Euler-Lagrange eqn. is solved by *viscosity* approximation (Osher-Sethian, Evans-Spruck), $$0 = \nabla \cdot \left[\frac{\nabla u}{|\nabla u|_{\varepsilon}} \right] + \lambda_{D}(x)(u^{0} - u), \quad \lambda_{D}(x) = \lambda \cdot 1_{\Omega \setminus D}(x).$$ $$|a|_{\varepsilon} = \sqrt{a^{2} + \varepsilon^{2}}$$ In terms of the variational formulation, this is to minimize $$E_{\varepsilon}[u \mid u^{0}, D] = \int_{\Omega} \sqrt{|Du|^{2} + \varepsilon^{2}} + \frac{\lambda}{2} \int_{\Omega \setminus D} |u - u^{0}|^{2} dx.$$ Define $v = \mathcal{E}z - u$ (same for v_0), $x_{\mathcal{E}} = (x, z)$, $\Omega_{\mathcal{E}} = \Omega_{\mathcal{E}} \times (0, 1)$ (s. f. $D_{\mathcal{E}}$). Then, $$E_{\varepsilon}[u|u^{0},D] = E[v|v^{0},D_{\varepsilon}] = \int_{\Omega_{\varepsilon}} |Dv| + \frac{\lambda}{2} \int_{\Omega_{\varepsilon} \setminus D_{\varepsilon}} |v-v^{0}|^{2} dx_{\varepsilon}.$$ (A thin-film approximation) ## Inpainting of Clean Images & Minimal Surface Problem Inpainting of clean (i.e. noise free) images (viscosity version): The classical (non-parametric) minimal surface problem (Giusti): $$\min_{v \in BV(D)} A(v; D) = \int_{D} \sqrt{|Dv|^{2} + 1}, \text{ subject to } v|_{\partial D} = \varphi.$$ Minimize the total surface area of the graph ## TV Inpainting of Blurred Images The TV inpainting model: Linear lowpass filter (blur) $$\min_{u} E[u | u^{0}, D, K] = \int_{\Omega} |Du| + \frac{\lambda}{2} \int_{\Omega \setminus D} |K * u - u^{0}|^{2} dx,$$ The associated *formal* Euler-Lagrange equation on Ω : $$0 = \nabla \cdot \left[\frac{\nabla u}{|\nabla u|} \right] + K^{t} * \lambda_{D}(x)(K * u^{0} - u), \quad \lambda_{D}(x) = \lambda \cdot 1_{\Omega \setminus D}(x).$$ with Neumann adiabatic condition along the boundary of Ω . ### TV Inpainting for Noisy and Blurry Images Chan-Shen (AMS Contemporary Math., 2002) Suppose $K=G_t$, is the **Gaussian** kernel. Then, the model gives a good inverting of heat diffusion. Without the TV regularization, **backward diffusion** is notoriously ill-posed. movie forever ## **TV Inpainting for the Error Concealment in Wireless Communication** A Blurry Image Image With Lost Packets A blurred image with 80 lost packets Deblurring and error concealment by TV inpainting Chan-Shen (AMS Contemporary Math., 2002) movie once ### Digital or Analog (i.e. Discrete vs. Continuous)? u(A) = a given on an interior pixel. Suppose that \mathcal{Q} is highly credible, i.e., no noise and no blurring. A good inpainting scheme must take advantage of this exta information. *Theoretical crisis* in the continuous (analog) interpolation theory: $$\Delta u = 0$$, $u = \phi$, along Γ ; $u(A) = a$, which is ill-posed. **Remedy** ? **Fattening** the inner pixel to an island. Clumsy ? Another approach: Go completely digital #### **Self-Contained Graph Spectral Theory** Chung-Yau (1994,1995) Continuous case: $$E[u] = \frac{1}{2} \int_{D} |\nabla u|^{2} dx \qquad \xrightarrow{\text{gradient}} \Delta u = -\frac{\partial E}{\partial u}.$$ • Graph Laplacian (d is the degree of a node): $$E_g[u] = \frac{1}{2} \sum_{\alpha \propto \beta} (u_\alpha - u_\beta)^2 \xrightarrow{\text{gradient}} \Delta_g u \Big|_{\alpha} = -du_\alpha + \sum_{\beta \propto \alpha} u_\beta,$$ which encodes all the information of the underlying graph. #### **Self-Contained Digital (Graph) TV Theory** Chan-Osher-Shen (2001) Continuous case: $$TV[u] = \int_{D} |\nabla u| dx \xrightarrow{\text{gradient}} \kappa = \nabla \bullet \left[\frac{\nabla u}{|\nabla u|} \right] = -\frac{\partial TV[u]}{\partial u}, \text{ the curv.}$$ Graph TV and graph curvature: $$\operatorname{TV}_{\mathbf{g}}[u] = \sum_{\alpha \in G} |\nabla_{\alpha} u| \xrightarrow{\operatorname{gradient}} k_{\alpha} = -\frac{\partial \operatorname{TV}_{\mathbf{g}}[u]}{\partial u_{\alpha}}.$$ • For weighted graphs, weights can be incorporated. ## **Digial TV Denoising of Data on Sierpinski Graph** Sharp transition is not smeared ## **Digital Zoom-in by (Digital) TV Inpainting** (test image from Caltech Comp. Vision Lab) The original image Zoom-out by a subsampling of factor 4 256 x 256 28 x 128 downsampling by factor 4 Harmonic inpainting TV inpainting The harmonic zoom-in The TV zoom-in 256 x 256 256 x 256 Coarse scale Finer scale Chan and Shen (SIAP, 2001) Sharp edges are successfully inpainted by TV, but blurred by Sobolev norms. ## **Decoding Marr's Primal-Sketch by Digital TV Inpainting** (test image from Caltech Comp. Vision Lab) Chan and Shen (SIAP, 2001) TV helps regularize the messy edge set # TV Inpainting & Human Visual Perception. I. (Kanisza) "E 3" or "B"? What we perceive (or guess) depends on the aspect ratio. So is TV inpainting! ## TV Inpainting & Human Visual Perception. II. (Kanisza) Kanizsa's entangled man ## **Can TV Inpainting Explain the Entangled Man?** Answer: Yes! It can. To minimize the TV norm, c =the body color = $.5 + \mathcal{E}!$ ## TV & Human Visual Perception. III. TV is Insufficient (Kanisza, Nitzberg-Mumford, Chan-Shen) To fix the problem, Chan and Shen (2001) proposed the CDD inpainting. #### **Table of Contents** - 1. Examples of Inpainting: Applications and Motivations - 2. Bayesian vs. Variational: Gibbs Fields & Ising's Lattice Spins - 3. TV Inpainting: Space of BV and Connection to Minimal Surfaces - 4. CDD Inpainting: Using 'Bad' Curvatures to Drive Interpolation - 5. Elastica Inpainting: From Euler to Mumford, & Curves to Images - 6. Mumford-Shah-Euler Inpainting: Free Boundary & Γ -Convergence - 7. Conclusion ## **Connectivity Principle in Vision: TV is Insufficient** (Kanisza, Nitzberg-Mumford, Chan-Shen) ## **CDD Inpainting: Curcature Driven Diffusion** Chan and Shen (J. Visual Comm. Image Rep., 2001) <u>Chan and Shen</u> introduced an inpainting mechanism based on CDD: <u>curvature driven diffusions</u>. Information is "fluxed into" into the inpainting domain by diffusions: $$\frac{\partial}{\partial t}u = \nabla \cdot \left[\frac{F(x, |\kappa|)}{|\nabla u|} \nabla u \right] + \lambda_e(x)(u - u^0),$$ where, F in the diffusivity coeff is to penalize large curvature. Large curvatures at artificial corners are penalized! CDD generally encourages the connection of broken parts, and thus realizes the Connectivity Principle in vision. ## **CDD Inpainting: Connection Enforcement** Chan and Shen (J. Visual Comm. Image Rep., 2001) Such weak edge is very nicely inpainted ## **CDD Inpainting: Who Stole My Company?** Chan and Shen (J. Visual Comm. Image Rep., 2001) A scene from UCLA campus To be inpainted The mask SOS: who stole my company? Initial guess CDD inpainting From the courtyard of Rolfe Hall, UCLA campus ## **Combining CDD with Sapiro's Transport** Chan and Shen (AMS Contemp. Math., 2002) - Quasi-axiomatic approach to integrate the two microscopic inpainting mechanisms. - Axioms (Chan-Shen, 2002): - Morphological invariance - **Rotational invariance** - Forward (stable) diffusion - Linear interpolation for pure transport - Then, there is only one class of 3rd order PDEs for inpainting: $$\frac{\partial u}{\partial t} = \nabla \cdot (f(\kappa, \sigma) \, \vec{n} + a \, \sigma \, \vec{t} \,).$$ $$f > 0, \ \kappa = \nabla \cdot \vec{n}, \ \sigma = \frac{\partial \ln|\nabla u|}{\partial \, \vec{t}}.$$ level sets #### **Table of Contents** - 1. Examples of Inpainting: Applications and Motivations - 2. Bayesian vs. Variational: Gibbs Fields & Ising's Lattice Spins - 3. TV Inpainting: Space of BV and Connection to Minimal Surfaces - 4. CDD Inpainting: Using 'Bad' Curvatures to Drive Interpolation - 5. Elastica Inpainting: From Euler to Mumford, Curves to Images - 6. Mumford-Shah-Euler Inpainting: Free Boundary & Γ -Convergence - 7. Conclusion ## Once upon a time, there was a guy named Euler He studied how a thin and torsion free *rod* bends under external forces at the two ends (1744): The energy that controls the shape is given by the total squared curvature : $$e_2[\gamma] = \int_{\gamma} (a + b\kappa^2) ds.$$ The equilibrium curves (local minima) are called elasticas. ## Elastica as Nonlinear-splines - G. Birkhoff and C. De Boor (1965) suggested to apply elasticas as new <u>interpolation tools</u>, or *nonlinear splines*, contrast to linear cubic splines in approximation theory. - D. Mumford (1994) first introduced Euler's elastica into <u>computer</u> <u>vision</u>, as a prior <u>curve model</u>, and expressed the solutions to the E-L equation in terms of elliptic functions: $$2\kappa''(s) + \kappa^3(s) = \frac{a}{b}\kappa(s).$$ Nitzberg, Mumford, and Shiota (1993) employed elasticas to connect large-scale occluded edges in vision modeling. ## Elasticas and A Drunk's Walking Path: Statistical Meaning The walking characteristics of the steps (fixed *N* steps): - step sizes $(h_1, h_2, ..., h_N)$ are i.i.d. of exponential type. - the uncertainty of the turn angle made at each step k is completely determined by and linearly proportional to the step size h_k . The ratios are Gaussian i.i.d.'s with mean 0. Then the distribution of the *N*-step polygonal walks γ : $$pdf(\gamma) = \frac{1}{Z} \exp\left(-\lambda L(\gamma) - \frac{1}{2\sigma^2} \left\|\kappa^2\right\|_{\gamma}\right) = \frac{1}{Z} \exp(-e_2(\gamma)).$$ ## **Sample Walking Paths of an Elastica Drunk** Chan-Kang-Shen (SIAP, 2002) Samples of 20-step walks: For step sizes: Exponential with mean 1/10; For the turns: Gaussian with mean 0 and std=3. **MATLAB Simulation** Unlike *Brownian* motions, the paths of an elastica drunk are more regular (smoother), which is what computer vision prefers for most contours in our daily life: buildings, desks, computers, etc. (Fractal coast lines are exceptions.) ### Lifting a Curve Model to an Image Model Using the level-sets of an image, we can "lift" a curve model to an image model (formally; theoretical study by Bellettini, et. al): $$E_{2}[u] = \int_{D} (a + b \kappa^{2}) | \nabla u | dx$$ $$= \int_{0}^{1} d \lambda \int_{\gamma_{\lambda}: u = \lambda} (a + b \kappa^{2}) ds$$ $$\kappa = \nabla \cdot \left[\frac{\nabla u}{|\nabla u|} \right] = \nabla \cdot \vec{n}$$ Notice that for the *mean curvature flow* (Evans, IPAM notes): $$u_{t} = (\delta_{ij} - \frac{u_{x_{i}}u_{x_{j}}}{|\nabla u|^{2}})u_{x_{i}}u_{x_{j}},$$ $$\left| \frac{d}{dt} \int_{D} |\nabla u| dx = - \int_{D} \kappa^{2} |\nabla u| dx.$$ ## **The Elastica Inpainting Model** Masnou-Morel (1998), Chan-Kang-Shen (SIAP, 2002) $$E[u \mid u^{0}, D] = \int_{\Omega} \varphi(\kappa) |\nabla u| dx + \frac{\lambda}{2} \int_{\Omega \setminus D} |u - u^{0}|^{2} dx,$$ $$\kappa = \nabla \cdot \vec{n} \text{ is the curvature, } \varphi(\kappa) = a + b \kappa^{2}.$$ ### Theorem (the associated PDE model). The gradient descent flow is given by $$\frac{\partial u}{\partial t} = \nabla \cdot \vec{V} + \lambda_D(x)(u^0 - u),$$ $$\vec{V} = \varphi(\kappa)\vec{n} - \frac{\vec{t}}{|\nabla u|} \frac{\partial(\varphi'(\kappa)|\nabla u|)}{\partial \vec{t}},$$ level sets where V is called the <u>flux field</u>, with proper boundary conditions. ## **Elastica Inpainting: Also Tranport + CDD** Chan-Kang-Shen (SIAP, 2002) level sets – Transport along the isophotes: $$V_{t} = -\frac{\vec{t}}{|\nabla u|} \frac{\partial (\varphi'(\kappa) |\nabla u|)}{\partial \vec{t}},$$ Curvature driven diffusion (CDD) across the isophote's: $$V_{n} = \varphi(\kappa)\vec{n} = \varphi(\kappa)\frac{\nabla u}{|\nabla u|}.$$ #### Conclusion: Elastica inpainting unifies the earlier work of Bertalmio, Sapiro, Caselles, and Ballester (2000) on transport based inpainting, and that of Chan and Shen (2001) on CDD inpainting. ## **Elastica Inpainting. I. Smoother Completion** Effect 1: as b/a increases, connection becomes smoother. Euler's elastica: $\phi(\kappa) = a + b\kappa^2$. ### Elastica Inpainting. II. Long Distance is Cheaper Effect 2: as b/a increases, long distance connection gets cheaper. Euler's elastica: $\phi(\kappa) = a + b\kappa^2$. For more theoretical and computational (4th order nonlinear!) details, please see Chan-Kang-Shen (*SIAP*, in press, 2002). #### **Table of Contents** - 1. Examples of Inpainting: Applications and Motivations - 2. Bayesian vs. Variational: Gibbs Fields & Ising's Lattice Spins - 3. TV Inpainting: Space of BV and Connection to Minimal Surfaces - 4. CDD Inpainting: Using 'Bad' Curvatures to Drive Interpolation - 5. Elastica Inpainting: From Euler to Mumford, & Curves to Images - 6. Mumford-Shah-Euler Inpainting: Free Boundary, Γ -Convergence - 7. Conclusion ## **Mumford-Shah Based Image Inpainting** Chan-Shen (SIAP, 2000), Tsai-Yezzi-Willsky (2001), Esedoglu-Shen (EJAP, 2002) The Mumford-Shah (1989) image model was initially designed for the segmentation application: $$E_{\mathrm{ms}}[u,\Gamma] = E[u \mid \Gamma] + E[\Gamma] = \frac{\gamma}{2} \int_{\Omega \setminus \Gamma} |\nabla u|^2 dx + \alpha \text{ length } (\Gamma),$$ Mumford-Shah based inpainting is to minimize: $$E_{\mathrm{ms}}[u,\Gamma\,|\,u^{0},D,K] = E_{\mathrm{ms}}[u,\Gamma] + E[u^{0}\,|\,u,\Gamma,D,K].$$ Inpainting domain possible blurring A free boundary optimization problem. ## Mumford-Shah Inpainting: Algorithm • For the **current** best guess of edge layout Γ , find u to minimize $$E_{\text{ms}}[u | \Gamma, u^{0}, D] = E[u | \Gamma] + E[u^{0} | u, \Gamma, D] + const.$$ \rightarrow equivalent to solving the elliptic equation on $\Omega \Gamma$: $$\gamma \Delta u + \lambda_e(x)(u^0 - u) = 0.$$ • This updated guess of u then guides the motion of Γ : $$\frac{dx}{dt} = (\alpha \kappa + [R]_{\Gamma})\vec{n}.$$ M. C. Motion Jump across Γ of the roughness measure $$R = \frac{\gamma}{2} |\nabla u|^2 + \frac{\lambda_e}{2} (u - u^0)^2.$$ [We can then benefit from the level-set implementation by Chan-Vese.] # Mumford-Shah Inpainting via Γ -Convergence Esedoglu-Shen (Europ. J. Appl. Math., 2002) The Γ -convergence approximation of Ambrosio-Tortorelli (1990): $$E_{\text{ms}}\left[u,\Gamma\right] = \frac{\gamma}{2} \int_{\Omega \setminus \Gamma} |\nabla u|^2 dx + \alpha \text{ length } (\Gamma),$$ $$E_{\varepsilon}[u,z] = \frac{\gamma}{2} \int_{\Omega} (z^2 + o(\varepsilon)) |\nabla u|^2 dx + \alpha \int_{\Omega} \left(\varepsilon |\nabla z|^2 + \frac{(1-z)^2}{4\varepsilon} \right) dx.$$ edge Γ is approximated by a signature function z. Esedoglu-Shen shows that inpainting is the perfect market for Γ -convergence ## Simple Elliptic Implementation Esedoglu-Shen (2002) The associated equilibrium PDEs are two coupled *elliptic* equations for u and z, with Neuman boundary conditions: $$\lambda_{D}(x)(u-u^{0}) - \gamma \nabla \cdot (z^{2}\nabla u) = 0,$$ $$(\gamma |\nabla u|^{2})z + \alpha \left(-2\varepsilon \Delta z + \frac{z-1}{2\varepsilon}\right) = 0,$$ which can be solved numerically by any efficient elliptic solver. ## **Applications: Disocclusion and Text Removal** Noisy image to be inpainted Inpainting output u inpainted u #### Esedoglu-Shen (2002) Inpainting output z the edge signature z #### Image to be inpainted Hello! We are Penguin A and 6 You gays must think that so many words have made a large amount of image information loss to this true? We disagree. We are more optimistic. The Inpainting domain (or mask) Hello! We are Penguin A and B. You guys must think that so many words have made a large amount of image information test. Is this true? We disagree. We are more optimistic. The Inpainting domain Inpainting output inpainted u # **Insufficiency** of Mumford-Shah Inpainting Defect I: Artificial corners Defect II: Fail to realize the Connectivity Principle, like TV. ### **Mumford-Shah-Euler Inpainting** Esedoglu-Shen (2002) Idea: change the *straight-line* curve model embedded in the Mumford-Shah image model to *Euler's elastica:* $$E_{\text{mse}}[u,\Gamma] = \frac{\gamma}{2} \int_{\Omega \setminus \Gamma} |\nabla u|^2 dx + e(\Gamma),$$ $$e(\Gamma) = \alpha \operatorname{length}(\Gamma) + \beta \int_{\Gamma} \kappa^2 ds, \text{ the elastica energy.}$$ The Γ -convergence approximation (conjecture) of De Giorgi (1991): $$E_{\varepsilon}[u,z] = \frac{\gamma}{2} \int_{\Omega} (z^{2} + o(\varepsilon)) |\nabla u|^{2} dx + \alpha \int_{\Omega} \left(\varepsilon |\nabla z|^{2} + \frac{W(z)}{4\varepsilon} \right) dx$$ $$+ \frac{\beta}{\varepsilon} \int_{\Omega} \left(2\varepsilon \Delta z - \frac{W'(z)}{4\varepsilon} \right)^{2} dx,$$ $$W(z) = (1-z)^{2} (1+z)^{2} \text{ is the double - well potential.}$$ For the technical and computational details, please see Esedoglu-Shen. # **Features of Mumford-Shah-Euler Inpainting** Esedoglu-Shen (2002) #### **Table of Contents** - 1. Examples of Inpainting: Applications and Motivations - 2. Bayesian vs. Variational: Gibbs Fields & Ising's Lattice Spins - 3. TV Inpainting: Space of BV and Connection to Minimal Surfaces - 4. CDD Inpainting: Using 'Bad' Curvatures to Drive Interpolation - 5. Elastica Inpainting: From Euler to Mumford, & Curves to Images - 6. Mumford-Shah-Euler Inpainting: Free Boundary & Γ -Convergence 7. Conclusion ## Conclusion - Bayesian framework (or Helmholtz principle) is the foundation of our approach to inpainting/visual interpolation. - Pure statistical Bayesian approaches often have difficulty in faithfully representing and recovering image geometries. - Geometric image models explicitly express image geometries (e.g., the regularity of level sets and jump sets) in terms of energies. - Geometric measure and free boundary theories are useful in understanding the behavior of our models. - Our models are computationally realized by nonlinear geometric PDEs, the level-set method, and Γ convergence approximations. - Future efforts will be focused on: (a) integration (of different tools: wavelets/stochastic/PDEs); (b) high-level vision (feature & pattern analysis); (c) efficient algorithms (for the nonlinear high-order PDEs). ### **Acknowledgments** - School of Mathematics and IMA, UMN. Inst. Pure Appl. Math (IPAM), UCLA. - Tony Chan, Stan Osher, Lumi Vese, Selim Esedoglu (UCLA); Li-Tien Cheng (UCSD), S.-H. Kang (U. Kentucky), H.-M. Zhou (Caltech), Mary Pugh (U. Toronto). - Gil Strang (Math, MIT) for his vision and guide on research. - S. Masnou and J.-M. Morel (France); G. Sapiro and M. Bertalmio (EECS, UMN). - David Mumford and Stu Geman (Appl. Math., Brown U.), J. Shah (Northeastern U.) - Dan Kersten and Paul Schrater (Psychology & EECS, UMN). - F. Santosa, P. Olver, R. Gulliver, W. Miller, M. Luskin (Math, UMN). - Rachid Deriche (*INRIA*, France) and Riccardo March (Italy). - David Donoho's group (Statistics, Stanford U.). - MATLAB, MathWorks Inc. - National Science Foundation, Division of Applied Mathematics.